

US009409148B2

(12) United States Patent Lin et al.

(10) Patent No.: US 9,409,148 B2 (45) Date of Patent: Aug. 9, 2016

(54) COMPOSITIONS AND METHODS FOR DIRECT CAPTURE OF ORGANIC MATERIALS FROM PROCESS STREAMS

(71) Applicant: UChicago Argonne, LLC, Chicago, IL

(72) Inventors: YuPo J. Lin, Naperville, IL (US);
Richard W. Brotzman, Naperville, IL
(US); Seth W. Snyder, Lincolnwood, IL

(73) Assignee: UCHICAGO ARGONNE, LLC, Chicago, IL (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 297 days.

(21) Appl. No.: 13/962,480

(22) Filed: Aug. 8, 2013

(65) Prior Publication Data

US 2015/0041400 A1 Feb. 12, 2015

(51) Int. Cl.

B01J 20/32 (2006.01)

B01J 20/28 (2006.01)

B01J 20/02 (2006.01)

(52) U.S. Cl.

(58) Field of Classification Search

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

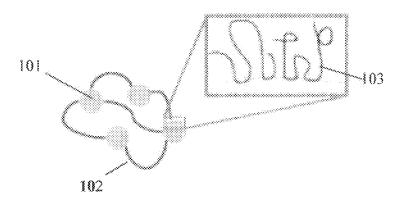
5,549,973 A 8/1996 Majetich et al. 5,783,263 A 7/1998 Majetich et al. (Continued)

FOREIGN PATENT DOCUMENTS

WO 9933072 7/1999 WO 9962079 12/1999 (Continued)

OTHER PUBLICATIONS

Boyer et al., The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications, Jan. 2010, NPG Asia Materials, pp. 23-30.*


(Continued)

Primary Examiner — David C Mellon (74) Attorney, Agent, or Firm — Olson & Cepuritis, Ltd.

(57) ABSTRACT

A particulate magnetic nanostructured solid sorbent (MNSS) material is described herein. The particles of the MNSS comprise a plurality of tethered nanoparticles. The nanoparticles are tethered together by substantially linear hydrocarbon chains, a poly(alkylene oxide) chains, or a combination thereof connecting the nanoparticles in a three-dimensional elastic network with the nanoparticles as junctions of the network having junction functionality of about 2.1 to about 6. The surfaces of at least some of the nanoparticles comprise a polymerized siloxane bearing at least one sorption-aiding substituent selected from a hydrophilic group and a lipophilic group. The plurality of nanoparticles is made up of superparamagnetic nanoparticles or a combination of superparamagnetic and non-magnetic nanoparticles. The individual superparamagnetic nanoparticles comprise a passivating metal oxide coating around a core comprising at least one nanocrystalline metal or alloy having ferromagnetic or ferrimagnetic properties.

20 Claims, 1 Drawing Sheet

